If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x-106=0
a = 2; b = 12; c = -106;
Δ = b2-4ac
Δ = 122-4·2·(-106)
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{62}}{2*2}=\frac{-12-4\sqrt{62}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{62}}{2*2}=\frac{-12+4\sqrt{62}}{4} $
| H=c-3/7.50 | | 1/5s=32 | | 30x-78=12+48 | | 8x+12-4x=24 | | 8x-12=6x+8 | | 10+32=2x | | 12=(a/7)-2 | | x+5(7)+1=88 | | 8x=12-4x=24 | | x/3.25-170/3.25=0 | | y+17=21 | | -4+a/2=-7 | | 3(2y+3)=-6y-9 | | 10x-18=12x-24 | | .1r+.7=1.6 | | (9x-19)(5x+16)=0 | | -4x²-3x+1=0 | | (-4)*(-4x)=1 | | M=1;b=0 | | (1/5)y+(1/8)=(7/40) | | x+1,2-3,6x=-7 | | X=-3x-20 | | 4r+4=-8 | | (x/7)+8=22 | | 25=x/6+3 | | J=5(3.14159265359)p | | -1+x/8=-2 | | M=-1/8;b=3/8 | | 3z-(4-z)-7=25 | | 7-c=-19 | | -5+b/10=-4 | | 15y+49=139 |